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Dielectrically Loaded
Waveguide: Variational

Nonstandard Eigenproblem

ISMO V. LINDELL, SENIOR MEMBER, IEEE, AND ARI H. SIHVOLA, STUDENT MEMBER, IEEE

4s&act —Motivated by simple fabricabifity, the dielectricafly loaded
corrugated wavegnide is ansdyzedapplying the theory of nonstandard
eigenvahresand variational principles recently presented by one of the
authors. The eigenvafue parameter of tfds problem is the boundary suseep-

tance of the corrugated surface, which choice is seen to lead to a simple
functional. The functional is tested for the air-filled corrugated guide, and

good accuracy for simple test functions is observed. D@ersion relation for

the loaded corrugated guide is cafcnfated together with the field pattern for

quasi-bafanced operation and estimates for the dielectric loss. The method

presented here afso appears to be applicable in other waveguide problems

where inhomogersecmsmateriaf is involved.

I. INTRODUCTION

T ‘HE CORRUGATED WAVEGUIDE has proven use-

ful for different slow-wave structure applications and

for radiating systems requiring rotational symmetry of the

power radiation pattern [1]. One of the drawbacks of the

corrugated structure is its tedious and costly fabrication. A

new method of fabrication was, however, recently sug-

gested by Tiuri, 1 which is quite simple: A dielectric rod is

put in a lathe, thin grooves are made on the outside, and

the outer surface is metallized. To reduce losses, a hole can
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Analysis of a

be drilled on the axis and we have a dielectrically loaded

corrugated waveguide. We are concerned here about the

analysis of such a structure.

The conventional air-filled corrugated waveguide can be

conveniently analyzed in terms of special functions for the

circular cylindrical geometry. The additional dielectric in-

terface, however, makes this approach very complicated.

So, a variational method is attempted instead. The eigen-

value problem, however, is not of the standard from Lf =
M4f, Bf = 0, but of the more general form L(X)f = O,
B(A) f = O, i.e., the eigenvalue parameter X does not appear

in the differential equation system in linear form, and it

might also be present in the boundary conditions. This

more general form of an eigenvalue problem was called a

nonstandard eigenvalue problem in recent studies [2], [3],

where a variational principle for such problems was also

formulated. This method will be applied here. The eigen-

value parameter may be chosen freely among all the

parameters of the problem. A stationary functional results

if the following functional equation can be solved for the

eigenvalue parameter A:

(f, L(~) f)+(f, B(X) f), =O (1)

where the inner products (”, . ),(., -)~ are defined in the

domains of the operators L and B, respectively.
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A condition for the application of ( 1) is that the operator

pair L, B is self adjoint with respect to the two inner

products.

In Section II, the problem is first formulated in terms of

the longitudinal components of the electromagnetic field,

which leads to a nonstandard eigenvalue problem in all the

parameters of the problem. It is seen that if we choose

the boundary susceptance of the corrugated surface to be

the eigenvalue parameter A, (1) can be solved easily for A

and a stationary functional for the boundary susceptance is

obtained. In Section HI, the conventional air-filled corru-

gated waveguide is considered for reference. Different ap-
proximating functions are tested and comparison with

exact results found from the literature is made. In Section

IV, the dielectrically loaded waveguide is analyzed, and a

set of curves describing the dispersion properties of the

guide are given. The transverse field pattern is presented

for a certain case approximating the self-dual (balanced)

operation of the empty guide. Also, losses due to the

dielectric loading are estimated with reference to the con-

ductor losses. Finally, the conclusion is given in Section V.

IL THE GENERAL lNHOMOGENEOUS WAVEGUIDE

We start by considering the wave propagation problem

in a very general waveguide, uniform in the z coordinate

direction but possibly inhomogeneous in the transverse

plane, and bounded by a surface which may be an aniso-

tropic impedance surface, Thus, the parameters p and c

may be functions of the transverse position vector p.

Looking for solutions for the fields in the form E( p) e-~~z,

II( p )e-~ez, and writing E and H as a sum of the longitu-

dinal components e(p), h(p) and the transversal compo-

nents e(p), h(p), we have from Maxwell’s equation

u- VXe+ju~h=O (2)

VeXu–j~u Xe+japh=O (3)

u. Vxh–jace=O (4)

VhXu–j~u Xh–j@~e=O. (5)

Here, u is the axial unit vector ( = u,) and the transversal

fields satisfy u. e = O and u. h = O. To reduce the number

of unknown quantities, some field components can be

eliminated.

For example, we might eliminate the longitudinal com-

ponents e, h, and the transverse field h to obtain an

equation for the transverse electric field alone [4]

(1”) (P )
V ;V (cc) +pu XV lu. VXe +(a2~6–~2)e =0.

(6)

This is an eigenvalue equation of the standard form in both

parameters tiz and ~2. What is not very convenient is that

the operator defined by (6) is not self adjoint, whence a

variational formulation would also involve the adjoint

problem and the dimension of the problem is doubled [5].

The functional given in [4] is not of a desirable form,

because it possesses more stationary points than those

corresponding to the solutions of (6).

GE(p)
p(p) *

%

ju
n

Fig. 1. The inhomogeneous waveguide with anisotropic impedance
surface.

Another possibility remains to solve (2)-(5) for

longitudinal components e, h. From (3), (4) we have

if we define

k:(p) =(A)2p(p)e(p)-p2.

the

(7)

(8)

Substituting (7) in (2), (4) leaves us with the equation pair

(( (1.)Cv )())‘/3UXV e
v. k:z

puxv rdpv h

These equations were derived by Kurtz and Streifer [6]

for optical fiber analysis. As can be readily seen, (9) is not

of the standard eigenvalue form for either of the parame-

ters w, ~. What makes this formulation attractive for

variational analysis is that it defines a self-adjoint problem,

as can be shown.

The boundary values were not included in the analysis in

[6], because the optical fiber is an open waveguide. Here,

we consider a boundary surface defined by a closed curve

Con the plane z = O (Fig. 1).

For an anisotropic impedance surface, we can write the

boundary conditions in the form

tzx E= Z~OH (lo)

where Z, is a two-dimensional dyadic [7], i.e., it satisfies

n” Z~ = Z~” n = O, where n is the outer normal unit vector on
the curve C, Fig. 1.

For simplicity, we assume a diagonal form for the im-

pedance dyadic

z,=uuz, +(rlx Zt)(rlxu)/~ (11)

which is valid for axial and transverse corrugations but

invalid if the corrugations are helical. For an isotropic

boundary we have Y,= l/Z$, but for a corrugated surface

Z, and Y. are independent. In fact, for ideal transverse

corrugations we have Z, = O and Y, may take on any value

depending on the depth of the corrugations.
Substituting (11) in (10) and separating the axial and

transverse field components, gives us the boundary condi-

tions in the form

n.uxe=– Z,h (12)

n“u Xh=Y$e. (13)
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For the axial fields alone, we have

( )()‘13UXV e _j—,
n ‘~’ B:;vv @pv h

(3 :,)(3=0(14)
Now it can be shown that the operators L and B defined

by (9) and (14), respectively, define a self-adjoint pair of

operators with respect to the conventional integral defini-

tions of the two inner products

(fljf’) =~(ele’+hlh’)~~ (15)

“ (fl~fz)~=fc(elez+h,h’)~c. (16)

In fact, it is not difficult to demonstrate that the following

Green’s formula [8] is valid:

(f,, U2)+(f,, Bf2)b= (U-l, f’)+ (w,, f’),. (17)

Thus, we are able to apply the general variational principle

(l), which gives us an equation between the different

parameters of the problem and the field quantities e(p),

h(p). If one of the parameters can be solved from (l), a

stationary functional is obtained for that parameter

according to the theory [2]. Equation (1) can be written in

the form

~[kj2(Oe(Ve)2+2~uVeX Vh+Wp(Vh)2)

+(ticez + oph’)] dS + j~(~e’ + Z,h’) dC= O.
c

(18)

A variational expression analogous to (18) without

boundary terms was given recently in [9] for inhomoge-

neous optical waveguides, but with a different coefficient

of the term u- ve x vA. From the evidence of our results

we believe that (18) is correct. For certain test functions,

the term in question may be zero and thus have no effect

on the calculations, as may have happened in [9].

Equation (18) is a very complicated equation in the

parameters u and ~ if the medium is not homogeneous,

because the term k; 2 involves both parameters. We are

not, however, limited to those parameters in choosing our

eigenvalue parameter A. In fact, also Y, and Z, may be

applied. If the boundary impedance were isotropic so that

~ = l/Z,, (18) is an algebraic equation of the second
degree in Z, or ~, and it can be readily solved to obtain a

stationary functional for Y, or Z,. So, we are able to handle

inhomogeneous waveguides with Iossy boundaries with this

technique.

For a corrugated surface, we may approximate the

boundary impedance by Z,= O and the only remaining

parameter is Y,, which depends on the depth of the corru-

gations. In this case, (18) reduces to a linear equation in ~,

which can be solved

1– se’ –~h’ dS. (19)

That (19) really is a stationary functional for the solutions

of (9), (14) with Z~ = O can be readily checked. Equation

(19) is the basis of the present method for the loaded

corrugated waveguide. Inserting approximations for the

fields e, h for fixed values of the parameters U, ~, ap-

proximations for the boundary admittance Y. are obtained.

For the known relation between ~ ands, the depth of the

corrugations, there results a relation between the parame-

ters /3, u, and s. If we could solve the parameter j3 from

(19), a stationary functional would result, as demonstrated

in [2].

III. THE CORRUGATED CIRCULAR WAVEGUIDE

In this study, we only consider a circular cylindrical

geometry and a step inhomogeneity of the dielectric

parameter, as provided by the suggested fabrication pro-

cedure. Because the present method is intended for a

programmable calculator, we have to apply suitable ap-

proximations for the corrugated surface admittance func-

tion.

A. Approximations for the Corrugated Surface

In the structure depicted in Fig. 2, we approximate the

corrugated surface by an anisotropic impedance surface

with radius b.

If the period t of the corrugations is small enough, a

radial TEM admittance seen from the boundary C is a

good approximation for the surface admittance ~. The

thickness of the corrugating metal disks is assumed very

small compared with t.The condition t/A <0.2 given in

[10] for plane structure is probably valid also here. The

exact TEM admittance can be written for fields possessing

cos @or sin@ variance on the azimuth angle [1 1], [12]

j J{(kb)Y1(kd)– Y{(kb).T1(kd)
~=jB,=–

‘II .J1(kb)Y1(kd)- Y1(kb)J1(kd)
(20)

valid for any values of b and d = b +s. q = ~.
Expression (20) carries the relation between the parame-

ter Y., the geometrical parameters b, s, and the dielectric

parameter t,. Because the present method was designed for

calculator applications, we applied several approximate

formulas for the exact formula (20) without Bessel func-

tions. If the radius b is large, we may apply the large

argument asymptotic formulas for the Bessel functions and

obtain the simple expression

qB~ = –cot(k.s)-l/2kb. (21)

This is given in incorrect form in [12], where the sign in

front of l/2kb term is reversed. If kb is large enough, the
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oz-.....,.,.,,.,.,E

,,, ,.,. ,, ,,, .r E+ :5+ using a programmable calculator, provided the number of
,.

+ —.— —— parameters A, ix,. . . is not very high. In fact, with just one
,- or two parameters, an engineering accuracy is easily ob-. . . . ,...,.: .”...:.,, . T tained.

Fig. 2. Dielectrically loaded corrugatedcircular waveguide. The optimum value of the parameter A is obtainable in

analytic form for simplest approximations for the fields. In

error is small, and we can write fact, it is seen from (19) that the stationary point is reached

for
?@, =–cot(ks). (22)

If ks is small, we can approximate Bessel functions by their fyf’)wa ~P

Taylor expansions, whence with no restrictions on b we

have from (20)
‘o=% ,~[~,p-(~,p+~,,p),k~]dp ’28)

o

@I, = – l/ks. (23) where k?= k2 - fl’ depen& on the parameters d ~d 6,.

Equation (23) also approximates (22), which is only valid For a linear approximation of the function ~

for large kb. The approximation (23), however, is also good

for small kb, if ks is small enough. All three approxima- f,(P)=P (29)

tions for (20) will be applied. we may evaluate (28) to obtain the expression

B. Approximations for the Fields

To apply a variational method, we must find reasonable

approximations for the unknown field functions. We are

here interested only in those modes possessing cos @ or

sin @dependence on O, corresponding to modes designated

by EH1. and HE,. in air-filled guides. For the general
inhomogeneous circular guide with circular symmetry of

the medium, we can see from (9) that an assumption of the

separable form

e(p, +)= f(p)cos~ (24)

for the electric field leads to the form

h(p, +)=g(p)sin+ (25)

for the magnetic field. Because the dielectric interface

presents no additional condition for the longitudinal fields

as long as they are continuous on the boundary, we may

choose any continuous functions f, g to approximate the

true fields.

From analyticity of the field functions on the axis (i.e.,

continuity of the fields and their derivatives) we may

conclude that the functions ~, g are odd in the argument p.

Hence, a polynomial approximation of the function ~ must

be of the form

(kC1b)2-(k~, -k~o)(b2-a2)
AO=L

2 )(&-a2) “*P (k ,b)2[(;kCob)2– l]+(k~l – kcoc

(30)

Here we denote k~o = k; – @2 and k~l = k: – l?2 = c,k~ –

p,.

Expression (30) reduces to /3\top[(kCOb/2)2 – 1] for

either a = b or t,= 1, which both correspond to the homo-

geneous guide with surface impedance.

More complicated expressions are obttiined for more

complicated approximations of the j function.

Inserting (30) in (19), an explicit formula for the

boundary susceptance is obtained for the linear approxi-

mation (29), which however is very complicated in the

general form. A special case for the empty corrugated

guide will be treated shortly.

C. The Air-Filled Corrugated Guide

To test the accuracy of the present method we consider

first the conventional corrugated guide, which has been

thoroughly analyzed in [12].

For a linear test function (29), an analytic expression for

the dispersion relation is obtained. In fact, setting e,= 1 in

f(P)= P+ap’ +”””” (26)
(30) and substituting in (19), we have for the linear ap-

proximation
In the air-filled guide, the functions ~ and g are necessarily -

multiples of the Bessel function, and hence, of each other,

whence a reasonable approximation of the g function at

first is to choose ‘b=~ ‘3’)

g(p) =Af(p) (27)

where A is a parameter to be determined through the

functional. If (26), (27) are inserted in (24), (25), and in the

functional (19), we may determine the parameters A, a,” “ “
by setting the derivatives of Y, with respect to these param-

eters equal to zero, whence equations are obtained, The

equations may be too complicated to solve analytically, in

which case we may very easily find the stationary points by

Inserting different approximations for the corrugation sus-

ceptance B.: (21), (22), or (23), we have different ap-

proximations for the dispersion relation ~(ti, b, s). In Figs.

3 and 4, the approximations based on (31) are depicted in

dashed line. When comparing to the exact curve taken

from [12], we see that the approximation (21) is generally

better than (23) except for small values of kb, i.e., for EHI,

wave. For a test function of the third degree (26), the
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10- & =0.7

z Approximations

5 - A- Eq. [23]
B - Eq [22)

C - Eq. [21)

C’ - Eq. (21)

o
kb

o 5 10

Fig. 3. Different approximations for the dispersion relation of the air-
filled corrugated waveguide. Solid line-exact [ 12]; dashed fine-linear
approximation; dotted line-cubic approximation. b\( b +s) = 0.7.

Fig. 4. Different approximations for the dispersion relation of the air-
filled corrugated waveguide. Solid line-exact [12]; dashed line-hnear
approximation; dotted line-cubic approximation. b/( b +s) = 0.9.

corresponding results are drawn in dotted line, which of

course follow the exact curves more closely.

It is noted that the relation ~(k) is not single-valued for

the two modes EHI, – HE I,, whereas the linear approxi-

mation (31) is. Therefore, the linear approximation does

not work well for one of the modes in the nonuniqueness

region. This happens near the cutoff of the HE,, mode, as

is clearly seen in Fig. 4. The cubic approximation does not

lead to a unique expression like (31), whence in the multi-

ple-valued region there exists two stationary points. It is

noted that, for this problem, the cubic approximation

together with (21 ) gives us results within the reading accu-

racy of the exact curve of [12]. Equation (31) is not without

value, however. Near balanced operation (B, = O) and TEM

operation (~ = k), the linear test function gives us a pretty

close approximation with either B or C approximations of

the susceptance function, for the dispersion relation of the

HE1l mode.

IV. THE DIELECTRICALLY LOADED CORRUGATED

GUIDE

A. Dispersion Properties

In Fig. 2, the geometry of the dielectrically loaded

corrugated guide is given. The dielectric is teflon with

e, = 2.08, and dispersion relation was calculated for three

values of the thickness of the loading layer, namely for a/ZJ

values 0.95, 0.9, and 0.8. Because of the relatively small

thickness, the test functions were taken as before, (24),

(25), and (27). In the air region, (27) is exactly valid, but in

the dielectric it is not and thus introduces some error. We

applied cubic test function for j(p) in (26) and (21) for the

boundary susceptance (corresponding to curves C in Figs.

3 and 4). The results are given in Fig. 5 (a)-(c).

In Fig. 5, only the HE1, mode is analyzed. It is seen that

s/b 1 ::095

05 -

0
, w%

o 0,5 10

(a)

sib ~ f .0,9

0.5 -

fil!io
o

0 05 10

(b)

(c)

Fig. 5. Dispersion relation for a dielectrictdly loaded corrugated wave-
guide for different vahres of the thickness of the dielectric layer. (a)

a/b = 0.95, (b) a/b = 0.9, (c) a/b = 0.8. Dielectric matenaf is teflon,
c;= 2.08. Cubi’c test functions ~d approximation (21) were applied.

for a certain propagation factor at a certain frequency, the

depth of the corrugations needed is smaller if the dielectric

layer is made thicker. Because losses increase with increas-

ing dielectric material, this method cannot be extended

very far.

B. Fields in Quasi-Balanced Operation

In balanced operation, the air-filled corrugated guide

satisfies the condition B. = O, and the ratio of the axial

electric and magnetic fields is either q or – q, depending

on the mode. This operation can also be called self dual,

because the duality transformation performed on the bal-

anced field leaves the field invariant [13]. This is only

possible for problems possessing self-dual media and

boundaries, whence a strict self-dual solution does not exist

for dielectrically loaded corrugated guides.
For thin dielectric layers, however, there exist modes

that do not differ much from a balanced mode in the

corresponding empty guide. The quasi-balanced condition

of a dielectrically loaded corrugated guide could be defined

either by B. = O or by A = l/rI to start with. The former

definition is not very convenient, because we loose our

eigenvalue parameter, and the variational principle should

be reformulated. The latter definition, however, is applica-

ble.

As an example, we consider the HE ~, mode in a corru-

gated guide partially filled with teflon, with the ratios

a/b = 0.9 and b/(b +s ) = 0.7. The following expression
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Fig. 6. Sketch of the transverse field pattern for the quasi-balanced
HE1, mode defined by (33). a/b= 0.9, b/(b +s) = 0.7, c,= 2.08.
Cubic test functions and (27) were applied.

for the transverse electric field can be written from (7)

applying the approximation (27) and (24), (25):

{ 4p+:0’A)(f’+:)e(p, t)) = – jk;2 u

+p(~-:”@)(f’-;)}. (32,

Here, the unit vector p equals uXcos(2@)+ MYsin(2@). No

assumption on the approximating function j(p) has yet

been made.

For the linear approximation, we see from (32) that the

second term is zero, whence the approximating transverse

field has constant polarization for every value of the

parameter A.
For the cubic approximation, the condition A =1/q can

be found by calculating values of optimum A from (28)

along the dispersion curve. In this case, it was found that

for the parameter values kob = 4.0, /3/k. = 0.8, and a =

0.5/b2 we have A. ==l/q. In this operation point, expres-

sion (32) gives us the numerical field

e= – 1.09jb(uX(l –(p/b)2)+0.08p( p/b)2),

forp<a

= -o.33jb(uX(l - (P/b)2)+0.08P(P/b)2),

for p> a. (33)

A sketch of (33) is given in Fig. 6. It is seen that the field

polarization is essentially constant, parallel to uX, for p < PO,

where p. is the solution of (~+ koqA)(l – 2ap2)-I-2(~ –

koaA)ap2 = O. For the present example we have PO= 0.96b.

The field intensity is small at the boundary; for (33) we

have e(b) values of only 2.2 percent of e(0) value. Thus,

the cross polarization should not be very great for radi-

ation.

From (32), we see that for the approximation (27) we

can find an operation point with no cross polarization in

the transverse field. In fact, taking A = @/koq we see that

in {32) the second term disappears for all approximating
functions ~. This means that the ratio of the longitudinal

fields should equate the TE wave impedance. The corre-

sponding operation point can again be found stepping

along the dispersion curve and calculating values of Ao.

For the previous example, we have kob = 2.5, fi/ko = 0.34

corresponding to the coefficients A = 0.34/ TJ,a = 0.59/b2.

1 -L!3L 10
. ‘qtan6 ~

0.1 -

Fig. 7. Normalized ratio of the dielectric and conductor losses in dielec-
tncally loaded corrugated waveguide for a = b.

C. Dielectric Losses of the Loaded Guide

Finally, we make a crude estimation of the losses in-

volved in the dielectric loading of the corrugated guide to

get an idea whether the suggested structure is applicable.

To keep calculations simple, we consider the limit of a thin

dielectric layer, i.e., let b a a. Thus, only dielectric losses

within the corrugations are calculated. Secondly, we only

consider large values of kb = &kOb, whence the asymp-

totic expressions of the Bessel functions can be applied.

For the respective dielectric and conductor power losses

of the radial TEM field within one period of the corruga-

tion we can write

(34)

p.= (R,/2)$H12dS (35)

where the volume integral is over a period volume inside

the corrugations, and the surface integral is taken over the

surface of a period of the corrugating material.

We consider the ratio of (34) and (35). For the ap-

proximations expressed above we can write

I’d/PC = (q tand/R, )(kt/2) ~k~~+~~&2ks. (36)

This is depicted in Fig. 7 in normalized form for different

values of k,s and the ratio t/s. Itis seen that for smalls, the

dielectric losses are negligible. This is evident, because for

smalls, the E field in the slot is small, whereas the H field

is not.

As a numerical example, we consider a corrugated copper

wavegvide loaded by teflon dielectric. At 10 GHz we have

tani3 = 0.00037 and R, = 26 m~, whence the values in Fig.

7 must be multiplied by 5.4 to obtain the ratio P~/P=. It is

seen that for all values of ks and t/s in Fig. 7, we have

dielectric losses smaller than conductor losses. For t/s <0.5
and s < A/10 we have pd <0. lPC. Since for HE1, opera-

tion the air-filled corrugated waveguide has very low losses

[14], the dielectric loading can be made without much

affecting this property. This conclusion, however, presumes
that the dielectric layer is very thin.

V. CONCLUSION

The theory of nonstandard eigenvalues and their ap-

proximate determination through variational methods was

applied to the problem of dielectrically loaded corrugated
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waveguides. The motivation for this analysis was a fabrica- [12]

tion process, which appears simpler than that for the

air-filled corrugated guide. The functional was derived

through longitudinal field components and for the eigen- [131

value parameter, the boundary susceptance of the corru-

gated surface was adopted. The functional was seen to give

good results for the empty corrugated guide, whence confi-

dence on the new results for the loaded guide could be 1141

justified. Finally, quasi-balanced operation and loss esti-

mation were considered. The dielectric losses did not ap- [15]

pear too heavy for applicable structures. [16]
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