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Dielectrically Loaded Corrugated
Waveguide: Variational Analysis of a
Nonstandard Eigenproblem
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Abstract —Motivated by simple fabricability, the dielectrically loaded
corrugated waveguide is analyzed applying the theory of nonstandard
eigenvalues and variational principles recently presented by one of the
authors. The eigenvalue parameter of this problem is the boundary suscep-

tance of the corrugated surface, which choice is seen to lead to a simple '

functional. The functional is tested for the air-filled corrugated guide, and
good accuracy for simple ‘test functions is observed. Dispersion relation for
the loaded corrugated guide is calculated together with the field pattern for
quasi-balanced operation and estimates for the dielectric loss. The method
presented here also appears to be applicable in other waveguide problems
where inhomogeneous material is involved.

I. INTRODUCTION

'"HE CORRUGATED WAVEGUIDE has proven use-

ful for different slow-wave structure applications and
for radiating systems requiring rotational symmetry of the
power radiation pattern [1]. One of the drawbacks of the
corrugated structure is its tedious and costly fabrication. A
new method of fabrication was, however, recently sug-
gested by Tiuri,! which is quite simple: A dielectric rod is
put in a lathe, thin grooves are made on the outside, and
the outer surface is metallized. To reduce losses, a hole can
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be drilled on the axis and we have a dielectrically loaded
corrugated waveguide. We are concerned here about the
analysis of such a structure.

The conventional air-filled corrugated waveguide can be
conveniently analyzed in terms of special functions for the
circular cylindrical geometry. The additional dielectric in-
terface, however, makes this approach very complicated.
So, a variational method is attempted instead. The eigen-
value problem, however, is not of the standard from Lf =
AMf, Bf =0, but of the more general form L(A)f =0,
B(A\)f =0, i.e., the eigenvalue parameter A does not appear
in the differential equation system in linear form, and it
might also be present in the boundary conditions. This
more general form of an eigenvalue problem was called a
nonstandard eigenvalue problem in recent studies [2], [3],
where a variational principle for such problems was also
formulated. This method will be applied here. The eigen-
value parameter may be chosen freely among all the
parameters of the problem. A stationary functional results
if the following functional equation can be solved for the
eigenvalue parameter A: ‘

where the inner products (-, -),(:,-), are defined in the
domains of the operators L and B, respectively.
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A condition for the application of (1) is that the operator
pair L, B is self adjoint with respect to the two inner
products.

In Section II, the problem is first formulated in terms of
the longitudinal components of the electromagnetic field,
which leads to a nonstandard eigenvalue problem in all the
parameters of the problem. It is seen that if we choose
the boundary susceptance of the corrugated surface to be
the eigenvalue parameter A, (1) can be solved easily for A
and a stationary functional for the boundary susceptance is
obtained. In Section III, the conventional air-filled corru-
gated waveguide is considered for reference. Different ap-
proximating functions are tested and comparison with
exact results found from the literature is made. In Section
IV, the dielectrically loaded waveguide is analyzed, and a
set of curves describing the dispersion properties of the
guide are given. The transverse field pattern is presented
for a certain case approximating the self-dual (balanced)
operation of the empty guide. Also, losses due to the
dielectric loading are estimated with reference to the con-
ductor losses. Finally, the conclusion is given in Section V.

11.

We start by considering the wave propagation problem
in a very general waveguide, uniform in the z coordinate
direction but possibly inhomogeneous in the transverse
plane, and bounded by a surface which may be an aniso-
tropic impedance surface. Thus, the parameters p and e
may be functions of the transverse position vector p.
Looking for solutions for the fields in the form E(p)e /%2,
H{p)e ™, and writing E and H as a sum of the longitu-
dinal components e(p), #(p) and the transversal compo-
nents e(p), h(p), we have from Maxwell’s equation

u-v Xe+ joph=10

THE GENERAL INHOMOGENEOUS WAVEGUIDE

()
(3)
(4)
(5)
Here, u is the axial unit vector (= u,) and the transversal
fields satisfy u-e =0 and u-h =0. To reduce the number
of unknown quantities, some field components can be
eliminated. :

For example, we might eliminate the longitudinal com-

ponents e, h, and the transverse field A to obtain an
equation for the transverse electric field alone [4]

VeXu— jBuXe+ joph=0
u-v Xh— joece=0
VhXu— jBuxh— jwee=0.

V(%V-(ee))ﬂm X V(iwv X e)+(w2ue - B*)e=0.

(6)
This is an eigenvalue equation of the standard form in both
parameters »? and 82. What is not very convenient is that
the operator defined by (6) is not self adjoint, whence a
variational formulation would also involve the adjoint
problem and the dimension of the problem is doubled [5].
The functional given in [4] is not of a desirable form,
because it possesses more stationary points than those
corresponding to the solutions of (6).
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Fig. 1. The inhomogeneous waveguide with anisotropic impedance

surface.

Another possibility remains to solve (2)-(5) for the
longitudinal components e, A. From (3), (4) we have

e A ) o

— jwe
k2(p)=w’n(p)e(p)~ B> (8)
Substituting (7) in (2), (4) leaves us with the equation pair
—Buxv

- Jep
B

ve

e
(uxh uXvh

if we define

o o P viag 19)
+("gf &?M)(;)=o. ©)

These equations were derived by Kurtz and Streifer [6]
for optical fiber analysis. As can be readily seen, (9) is not
of the standard eigenvalue form for either of the parame-
ters w, B. What makes this formulation attractive for
variational analysis is that it defines a self-adjoint problem,
as can be shown.

The boundary values were not included in the analysis in
[6], because the optical fiber is an open waveguide. Here,
we consider a boundary surface defined by a closed curve
C on the plane z = 0 (Fig. 1).

For an anisotropic impedance surface, we can write the
boundary conditions in the form

nxXE=Z-H (10)
where Z_ is a two-dimensional dyadic [7], i.e., it satisfies
n-Z, = Z-n =0, where n is the outer normal unit vector on
the curve C, Fig. 1. ‘

For simplicity, we assume a diagonal form for the im-
pedance dyadic

Z=uuZ +(nXu)(nxXu)/Y,

(11)

which is valid for axial and transverse corrugations but
invalid if the corrugations are helical. For an isotropic
boundary we have Y, =1/Z_, but for a corrugated surface
Z, and Y, are independent. In fact, for ideal transverse
corrugations we have Z_ = 0 and Y, may take on any value
depending on the depth of the corrugations.

Substituting (11) in (10) and separating the axial and
transverse field components, gives us the boundary condi-
tions in the form

(12)
(13)

nuxe=-—2nh
n-uxXh=7Ye.
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For the axial fields alone, we have

T )
(;{ (;s)(Z):o. (14)

Now it can be shown that the operators L and B defined
by (9) and (14), respectively, define a self-adjoint pair of
operators with respect to the conventional integral defini-
tions of the two inner products

wevy

o L2
n-k, Bux v

(f1: 1) = [(erea+ hiha) dS (15)

’ (f19f2)b=¢i:(elez+hlh2)dc' (16)

In fact, it is not difficult to demonstrate that the following
Green’s formula [8] is valid:

(fi» L)+ (f1, Bh) = (L1, )+ (Bfi, ). (17)

Thus, we are able to apply the general variational principle
(1), which gives us an equation between the different
parameters of the problem and the field quantities e(p),
h(p). If one of the parameters can be solved from (1), a
stationary functional is obtained for that parameter
according to the theory [2]. Equation (1) can be written in
the form

f[kc‘z(we(Ve)2+2,Bu-Ve X Vh+ w,u(vh)z)
s

+(wee + wph?)]ds + j (Y2 +2,h?) dC =0,
C

(18)
A variational expression analogous to (18) without
boundary terms was given recently in [9] for inhomoge-
neous optical waveguides, but with a different coefficient
of the term u-ve X Vh. From the evidence of our results
we believe that (18) is correct. For certain test functions,
the term in question may be zero and thus have no effect
on the calculations, as may have happened in [9].

Equation (18) is a very complicated equation in the
parameters w and B if the medium is not homogeneous,
because the term k2 involves both parameters. We are
not, however, limited to those parameters in choosing our
eigenvalue parameter A. In fact, also Y, and Z, may be
applied. If the boundary impedance were isotropic so that
Y,=1/Z_, (18) is an algebraic equation of the second
degree in Z or Y,, and it can be readily solved to obtain a
stationary functional for Y, or Z_. So, we are able to handle
inhomogeneous waveguides with lossy boundaries with this
technique.

For a corrugated surface, we may approximate the
boundary impedance by Z =0 and the only remaining
parameter is Y, which depends on the depth of the corru-
gations. In this case, (18) reduces to a linear equation in Y,
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which can be solved
jw

¢Ce2dC

YS‘=

w

j;[k;z(e(Ve)2+ZBu-Ve X Vh +p.(Vh)2)

—ee? - p.hz] ds. (19)

That (19) really is a stationary functional for the solutions
of (9), (14) with Z, =0 can be readily checked. Equation
(19) is the basis of the present method for the loaded
corrugated waveguide. Inserting approximations for the
fields e, 4 for fixed values of the parameters w, 8, ap-
proximations for the boundary admittance Y, are obtained.
For the known relation between Y, and s, the depth of the
corrugations, there results a relation between the parame-
ters B, w, and s. If we could solve the parameter 8 from
(19), a stationary functional would result, as demonstrated
in [2].

I1I.

In this study, we only consider a circular cylindrical
geometry and a step inhomogeneity of the dielectric
parameter, as provided by the suggested fabrication pro-
cedure. Because the present method is intended for a
programmable calculator, we have to apply suitable ap-
proximations for the corrugated surface admittance func-
tion.

THE CORRUGATED CIRCULAR WAVEGUIDE

A. Approximations for the Corrugated Surface

In the structure depicted in Fig. 2, we approximate the
corrugated surface by an anisotropic impedance surface
with radius b.

If the period 7 of the corrugations is small enough, a
radial TEM admittance seen from the boundary C is a
good approximation for the surface admittance Y,. The
thickness of the corrugating metal disks is assumed very
small compared with . The condition ¢/A < 0.2 given in
[10] for plane structure is probably valid also here. The
exact TEM admittance can be written for fields possessing
cos ¢ or sin¢ variance on the azimuth angle [11], [12]
y = i, = 4 LUV (kd) = Yi(b) ] (kd)

’ S J(kb)Y,(kd)-Y,(kb)J,(kd)
valid for any values of b and d =b + 5. n=+/p /€.

Expression (20) carries the relation between the parame-
ter Y,, the geometrical parameters b, s, and the dielectric
parameter ¢,. Because the present method was designed for
calculator applications, we applied several approximate
formulas for the exact formula (20) without Bessel func-
tions. If the radius b is large, we may apply the large
argument asymptotic formulas for the Bessel functions and
obtain the simple expression

nB, = —cot(ks)—1/2kb. (21)

This is given in incorrect form in [12], where the sign in
front of 1/2kb term is reversed. If kb is large enough, the

(20
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Fig. 2. Dielectrically loaded corrugated circular waveguide.

error is small, and we can write
nB, = —cot(ks). (22)

If ks is small, we can approximate Bessel functions by their
Taylor expansions, whence with no restrictions on b we
have from (20)

7B, = —1/ks. (23)

Equation (23) also approximates (22), which is only valid
for large kb. The approximation (23), however, is also good
for small kb, if ks is small enough. All three approxima-
tions for (20) will be applied.

B. Approximations for the Fields

To apply a variational method, we must find reasonable
approximations for the unknown field functions. We are
here interested only in those modes possessing cos¢ or
sin¢ dependence on ¢, corresponding to modes designated
by EH,, and HE,, in air-filled guides. For the general
inhomogeneous circular guide with circular symmetry of
the medium, we can see from (9) that an assumption of the
separable form

e(p,9)=f(p)cos¢ (24)
for the electric field leads to the form
h(p,¢)=g(p)sing (25)

for the magnetic field. Because the dielectric interface
presents no additional condition for the longitudinal fields
as long as they are continuous on the boundary, we may
choose any continuous functions f, g to approximate the
true fields.

From analyticity of the field functions on the axis (i.e.,
continuity of the fields and their derivatives) we may
conclude that the functions f, g are odd in the argument p.
Hence, a polynomial approximation of the function f must
be of the form

f(p)=p+ap’+---. (26)
In the air-filled guide, the functions f and g are necessarily
multiples of the Bessel function, and hence, of each other,
whence a reasonable approximation of the g function at
first is to choose

g(p)=A4f(p) (27)

where A is a parameter to be determined through the
functional. If (26), (27) are inserted in (24), (25), and in the
functional (19), we may determine the parameters 4, a, - - -

by setting the derivatives of Y, with respect to these param-
eters equal to zero, whence equations are obtained. The
equations may be too complicated to solve analytically, in
which case we may very easily find the stationary points by
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using a programmable calculator, provided the number of
parameters 4, a, - - - is not very high. In fact, with just one
or two parameters, an engineering accuracy is easily ob-
tained.

The optimum value of the parameter 4 is obtainable in
analytic form for simplest approximations for the fields. In
fact, it is seen from (19) that the stationary point is reached
for

5 INCRZAE"
P 0
“ [ £ —(f2%+ £/p)/k2] dp

(28)

0

where k2 = k? — B2 depends on the parameters a and «,.
For a linear approximation of the function f

f1(P)=P

we may evaluate (28) to obtain the expression
B (kclb)z—(kfl—kfo (b —a?)
o=~ .
¥ (kb )| (k) =1]+ (k2 = k3,) (52 — a?)
(30)
Here we denote k2, = k3 — B? and k2 = k? — B% =¢ k2 —
B>.

Expression (30) reduces to B/wpu[(k.b/2)*>—1] for
either a = b or €, =1, which both correspond to the homo-
geneous guide with surface impedance.

More complicated expressions are obtained for more
complicated approximations of the f function. ‘

Inserting (30) in (19), an explicit formula for the
boundary susceptance is obtained for the linear approxi-
mation (29), which however is very complicated in the

general form. A special case for the empty corrugated
guide will be treated shortly.

(29)

C. The Air- Filled Corrugated Guide

To test the accuracy of the present method we consider
first the conventional corrugated guide, which has been
thoroughly analyzed in [12].

For a linear test function (29), an analytic expression for
the dispersion relation is obtained. In fact, setting e, =1 in
(30) and substituting in (19), we have for the linear ap-
proximation

N

Inserting different approximations for the corrugation sus-
ceptance B, (21), (22), or (23), we have different ap-
proximations for the dispersion relation 8(w, b, s). In Figs.
3 and 4, the approximations based on (31) are depicted in
dashed line. When comparing to the exact curve taken
from [12], we see that the approximation (21) is generally
better than (23) except for small values of kb, i.e., for EH,,
wave. For a test function of the third degree (26), the

[(b)> 4] [(kb)*+4kbn B, 4]
kb[kb +4nB,]

(31
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Fig. 3. Different approximations for the dispersion relation of the air-
filled corrugated waveguide. Solid line—exact [12]; dashed line—linear
approximation; dotted line—cubic approximation. /(b + s)=0.7.
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Fig. 4. Different approximations for the dispersion relation of the air-
filled corrugated waveguide. Solid line—exact [12]; dashed line—hinear
approximation; dotted line—cubic approximation. b/(b + s) = 0.9.

corresponding results are drawn in dotted line, which of
course follow the exact curves more closely.

It is noted that the relation B(k) is not single-valued for
the two modes EH,, —HE,,, whereas the linear approxi-
mation (31) is. Therefore, the linear approximation does
not work well for one of the modes in the nonuniqueness
region. This happens near the cutoff of the HE;; mode, as
is clearly seen in Fig. 4. The cubic approximation does not
lead to a unique expression like (31), whence in the multi-
ple-valued region there exists two stationary points. It is
noted that, for this problem, the cubic approximation
together with (21) gives us results within the reading accu-
racy of the exact curve of [12]. Equation (31) is not without
value, however. Near balanced operation ( B, = 0) and TEM
operation (8 = k), the linear test function gives us a pretty
close approximation with either B or C approximations of
the susceptance function, for the dispersion relation of the
HE,, mode.

IV. THE DIELECTRICALLY LOADED CORRUGATED
GUIDE

A. Dispersion Properties

In Fig. 2, the geometry of the dielectrically loaded
corrugated guide is given. The dielectric is teflon with
¢, = 2.08, and dispersion relation was calculated for three
values of the thickness of the loading layer, namely for a /b
values 0.95, 0.9, and 0.8. Because of the relatively small
thickness, the test functions were taken as before, (24),
(25), and (27). In the air region, (27) is exactly valid, but in
the dielectric it is not and thus introduces some error. We
applied cubic test function for f(p) in (26) and (21) for the
boundary susceptance (corresponding to curves C in Figs.
3 and 4). The results are given in Fig. 5 (a)—(c).

In Fig. 5, only the HE,, mode is analyzed. It is seen that

s/b
05

1
10 i

Fig. 5. Dispersion relation for a dielectrically loaded corrugated wave-
guide for different values of the thickness of the dielectric layer. (a)
a/b=0.95, (b) a/b=0.9, (¢) a/b=0.8. Dielectric material is teflon,
€, = 2.08. Cubic test functions and approximation (21) were applied.

for a certain propagation factor at a certain frequency, the
depth of the corrugations needed is smaller if the dielectric
layer is made thicker. Because losses increase with increas-
ing dielectric material, this method cannot be extended
very far.

B. Fields in Quasi- Balanced Operation

In balanced operation, the air-filled corrugated guide
satisfies the condition B, =0, and the ratio of the axial
electric and magnetic fields is either » or — %, depending
on the mode. This operation can also be called self dual,
because the duality transformation performed on the bal-
anced field leaves the field invariant [13]. This is only
possible for problems possessing self-dual media and
boundaries, whence a strict self-dual solution does not exist
for dielectrically loaded corrugated guides.

For thin dielectric layers, however, there exist modes
that do not differ much from a balanced mode in the
corresponding empty guide. The quasi-balanced condition
of a dielectrically loaded corrugated guide could be defined
either by B,=0 or by A=1/7 to start with. The former
definition is not very convenient, because we loose our
eigenvalue parameter, and the variational principle should
be reformulated. The latter definition, however, is applica-
ble.

As an example, we consider the HE |, mode in a corru-
gated guide partially filled with teflon, with the ratios
a/b=0.9 and b/(b+s)=0.7. The following expression
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Fig. 6. Sketch of the transverse field pattern for the quasi-balanced Fig. 7. Normalized ratio of the dielectric and conductor losses in dielec-

HE,, mode defined by (33). a/b=09, b/(b+s5)=0., ¢,=208.
Cubic test functions and (27) were applied.

for the transverse electric field can be written from (7)
applying the approximation (27) and (24), (25):

e(o,9) == ks E32 ) 1+

(284 o

Here, the unit vector p equals u,cos(2¢)+u,sin(2¢). No
assumption on the approximating function f(p) has yet
been made.

For the linear approximation, we see from (32) that the
second term is zero, whence the approximating transverse.
field has constant polarization for every value of the
parameter A4.

For the cubic approximation, the condition 4 =1/7 can
be found by calculating values of optimum A4 from (28)
along the dispersion curve. In this case, it was found that
for the parameter values kyb=4.0, B/k, =038, and a=
0.5/b% we have A, ~1/7. In this operation point, expres-
sion (32) gives us the numerical field

e=—1.09b{u,(1-(p/b)*)+0.08p(p/b)"},
forp<a

= —0.33jb{u,(1- (p/b)*)+0.08p (0/b)*},
forp>a. (33)

A sketch of (33) is given in Fig. 6. It is seen that the field
polarization is essentially constant, parallel to u,, for p < p,,
where p, is the solution of (8 + kgnA)1—2ap?)+2(B —
koaAd)ap® =0. For the present example we have p, = 0.96b.
The field intensity is small at the boundary; for (33) we
have e(b) values of only 2.2 percent of e(0) value. Thus,
the cross polarization should not be very great for radi-
ation.

From (32), we see that for the approximation (27) we
can find an operation point with no cross polarization in
the transverse field. In fact, taking 4 = 8/kyn we see that
in (32) the second term disappears for all approximating
functions f. This means that the ratio of the longitudinal
fields should equate the TE wave impedance. The corre-
sponding operation point can again be found stepping
along the dispersion curve and calculating values of A4.
For the previous example, we have kb = 2.5, 8/k, = 0.34
corresponding to the coefficients 4 = 0.34/%, a = 0.59/b>.

trically loaded corrugated waveguide for a = b.

C. Dielectric Losses of the Loaded Guide

Finally, we make a crude estimation of the losses in-
volved in the dielectric loading of the corrugated guide to
get an idea whether the suggested structure is applicable.
To keep calculations simple, we consider the limit of a thin
dielectric layer, i.e., let b — a. Thus, only dielectric losses
within the corrugations are calculated. Secondly, we only
consider large values of kb =\/e_, kob, whence the asymp-
totic expressions of the Bessel functions can be applied.

For the respective dielectric and conductor power losses
of the radial TEM field within one period of the corruga-
tion we can write

—ans X f1E2
P, = tand / \E|2dV (34)

P,=(R,/DPH dS (35)
where the volume integral is over a period volume inside
the corrugations, and the surface integral is taken over the
surface of a period of the corrugating material.

We consider the ratio of (34) and (35). For the ap-
proximations expressed above we can write

2ks —sin2ks
P,/P,= (ntand/R,)(kt/2) T +S)S+sin2ks . (36)
This is depicted in Fig. 7 in normalized form for different
values of ks and the ratio ¢ /5. It is seen that for small s, the
dielectric losses are negligible. This is evident, because for
small s, the E field in the slot is small, whereas the H field
is not.

As a numerical example, we consider a corrugated copper
wavegnide loaded by teflon diclectric. At 10 GHz we have
tand = 0.00037 and R, = 26 m{, whence the values in Fig.
7 must be multiplied by 5.4 to obtain the ratio P, /P,. It is
seen that for all values of ks and ¢/s in Fig. 7, we have
dielectric losses smaller than conductor losses. For ¢ /s < 0.5
and s <A /10 we have P, <0.1P,. Since for HE, opera-
tion the air-filled corrugated waveguide has very low losses
[14], the dielectric loading can be made without much
affecting this property. This conclusion, however, presumes
that the dielectric layer is very thin.

V. CONCLUSION

The theory of nonstandard eigenvalues and their ap-
proximate determination through variational methods was
applied to the problem of dielectrically loaded corrugated
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waveguides. The motivation for this analysis was a fabrica-
tion process, which appears simpler than that for the
air-filled corrugated guide. The functional was derived
through longitudinal field components and for the eigen-
value parameter, the boundary susceptance of the corru-

gated surface was adopted. The functional was seen to give

good results for the empty corrugated guide, whence confi-
dence on the new results for the loaded guide could be
* justified. Finally, quasi-balanced operation and loss esti-
mation were considered. The dielectric losses did not ap-
pear too heavy for applicable structures.
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